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1. Introduction

In string theory, generic non-supersymmetric backgrounds contain tachyons and are there-

fore unstable. What happens to such backgrounds under the condensation of these tachyons

is a very interesting question, which is however difficult to answer in general. For a special

class of non-supersymmetric orbifolds this has been studied in [1 – 3], where use was made

of the fact that the tachyons in these models are localised on space-time defects. This al-

lows to apply techniques similar to those employed in the treatment of open string tachyon

condensation.
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From the world sheet point of view, tachyon condensation is decribed by a perturbation

of the conformal field theory associated to the initial background by relevant operators.

The end point of the induced bulk renormalisation group flow is a new conformal field

theory which describes the vacuum reached after the decay of the original background.

Unfortunately, the analysis of such bulk RG flows is very tedious and in particular for

models of interest in string theory, not much is known about them. In some cases however

there are additional structures which can be used in the analysis. For instance, the non-

supersymmetric orbifolds mentioned above, although not being space-time supersymmetric,

exhibit N = 2 world sheet supersymmetry, which gives more controle over the RG flow due

to non-renormalisation theorems.

An interesting question which arises in the context of closed string tachyon condensa-

tion is the fate of the D-branes in the initial theory once the background decays to a new

vacuum. For the non-supersymmetric orbifolds this has been addressed in [4 – 6]. Since the

tachyon condensation in these examples partially resolves the orbifold singularity, there are

fewer D-brane charges available after the condensation, and some of the D-branes have to

decouple from the theory.

From a world sheet point of view, the effect of closed string tachyon condensation on

D-branes is described by perturbations with relevant bulk fields in the presence of world

sheet boundaries. Such perturbations induce flows in both the bulk as well as the boundary

sectors of the theory, which makes them even more tedious to analyse.

In this paper, we propose a new approach to the regularisation and renormalisation of

bulk perturbations in the presence of boundaries. As explained in some detail in section

2, we decouple bulk and boundary flows. We first perform the bulk flow and, in a second

step, treat the effect on the boundary sectors, which then amounts to merging a world

sheet defect line with a boundary.

Defects lines are one-dimensional interfaces which separate two possibly different con-

formal field theories (see e.g. [7 – 15]). A special type of such defects, so called topological

defects can be shifted on the world sheet and in particular can be moved smoothly on top

of other defects resulting in new fused defects. Likewise, they can be brought to world

sheet boundaries transforming the original boundary conditions to different ones. Generic,

non-topological defects on the other hand, cannot be moved on the world sheet without

changing correlation functions, and bringing them close to world sheet boundaries (or to

other such defects) results in singularities.

The defects which emerge in our treatment of bulk perturbations of boundary con-

formal field theories are defects between the UV and IR CFTs of the corresponding RG

flows. As such they are non-topological in general, and hence their fusion with world sheet

boundaries is singular. This is indeed expected. Encoding the effect of the bulk pertur-

bation near the boundary, the process of merging the defect with the boundary has to be

regularised just as the bulk perturbation near the boundary has to be.

To avoid dealing with this regularisation, we consider supersymmetric flows between

N = 2 superconformal field theories here. The corresponding defects are supersymmetric

and are in particular compatible with a topological twist of the theory. In the twisted

theory, they become topological and can therefore be merged with world sheet boundaries
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without the need of regularisation, determining in this way to what boundary condition a

given one flows under the bulk perturbation.

The concrete examples we study here are RG flows between orbifolds of N = 2 su-

perconformal minimal models generated by twist field perturbations. These models have

an alternative description as Landau-Ginzburg orbifolds which lends itself easily to the

construction of supersymmetric defects and the analysis of their properties as e.g. fusion.

We generalise the formalism developed in [16 – 18] to deal with B-type defects in Landau-

Ginzburg models to the case of Landau-Ginzburg orbifolds, and use it to construct the

defects describing the twist field perturbations of minimal model orbifolds. Indeed, these

flows are very similar to the flows of non-superymmetric orbifolds mentioned above, and

the methods we describe here easily generalise to perturbations of orbifolds C/Zd.

The use of defects to describe the effect of bulk flows on boundary conditions is non-

perturbative in nature. After all, it involves a defect between UV and IR conformal field

theories. Thus, it is in general difficult to find the defect describing a particular pertur-

bation. In the examples at hand however, one can use mirror symmetry to relate per-

turbations and defects. The mirrors of the minimal model orbifolds are the unorbifolded

minimal models, which have a Landau-Ginzburg description. The twist fields perturbing

the minimal model orbifolds are mapped under mirror symmetry to monomials in the chiral

superfield deforming the superpotential of the Landau-Ginzburg model. The effect of such

deformations on A-branes can easily be studied and compared to the fusion of defects in

the Landau-Ginzburg orbifolds.

This paper is organised as follows. In section 2 we describe in some more detail how

the effect of bulk perturbations on boundary conditions is captured by the fusion with

a defect. In section 3 we introduce the concrete examples (perturbations of orbifolds of

N = 2 superconformal field theories), in which we apply this method, and at the same

time outline our strategy and summarise the results obtained in the following sections.

Section 4 is devoted to a general discussion of B-type defects in Landau-Ginzburg orbifolds

and their description in terms of equivariant matrix factorisations. In section 5 we use

this formalism to construct a special class of defects between orbifolds of N = 2 minimal

models, which we propose to be the defects arising in RG flows between these models.

We also analyse their properties, in particular their fusion with each other and with B-

type boundary conditions. In section 6 we compare this fusion with the behaviour of

A-type D-branes under the corresponding flows on the mirror side, which can be studied

rather explicitly. Section 7 contains some comments on the description of RG flows for

non-supersymmetric orbifolds C/Zd. We close with some open problems in section 8.

2. Bulk flows and defects

The topic of this article is the behaviour of D-branes or conformal boundary condition under

relevant bulk perturbations. This subject has been addressed in the literature before, using

the Thermodynamic Bethe Ansatz [19] the truncated conformal space method [20] or by

analysing the RG flow equations for bulk and boundary couplings [21, 22]. The new idea
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Figure 1: Perturbation restricted to a domain U (shaded). UV and IR theory are separated by a

defect line.

put forward in this article is to use defects to describe the effect of bulk perturbations of

conformal field theories on conformal boundary conditions.

Conformal field theories can be perturbed by adding terms

∆S =
∑

i

λi

∫

Σ
d2zϕi(z, z̄) (2.1)

to the action. Here λi are coupling constants, and ϕi are marginal or relevant fields which

are integrated over the world sheet surface Σ. Perturbed correlation functions are then

obtained from those of the unperturbed theory by

〈. . .〉λi = 〈. . . e∆S〉λi=0 . (2.2)

Obviously, expressions like this have to be regularised for instance by means of a cutoff

restricting the integration domain of the perturbations away from any other field insertion.

The renormalisation group flow then drives the system from the UV to the IR fixed point

(if existent) of the perturbation, which is another conformal field theory. In the special

case where the operator is marginal, the theory remains conformal for all values of the

coupling constants.

Instead of a perturbation on the entire surface, one can also consider perturbations

which are restricted to a domain U ⊂ Σ, as indicated in figure 1. In the same way as before,

one obtains perturbed correlation functions and a renormalisation group flow. Since local

properties outside U are not affected by the perturbation, the correlation functions at the

endpoint of the flow describe the situation of the original UV conformal field theory on

Σ − U and the IR theory on U , which because of conformal invariance are separated by a

conformal defect line on the boundary ∂U . In this way, perturbations give rise to conformal

defects separating UV and IR theories of the corresponding renormalisation group flows.

(Similarly, perturbations with exactly marginal operators give rise to defects between the

unperturbed and the perturbed theory.)

This relation between bulk RG flows and defects is particularly useful in the study of

bulk perturbations of conformal field theories on surfaces with boundary.1 Apart from the

1See [21, 23, 24] for recent discussions of bulk induced boundary flows using other methods.
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bulk RG flow such perturbations in general also induce RG flows in the boundary sectors,

and UV boundary conditions flow to boundary conditions of the IR theory. It is a very

interesting question, to which IR boundary condition a given boundary condition in the

UV flows, or to formulate it in string theory terminology, what happens to a D-brane under

closed string tachyon condensation.

If in the UV one starts with a conformal field theory defined on a surface Σ with bound-

ary and a conformal boundary condition along ∂Σ, then, besides the regularisation already

present in the bulk case, one also has to restrict the domains of the integrals (2.2) away

from the boundary. This is due to a non-trivial singular bulk-boundary operator product

expansion. Thus, in this situation there are two independent regularisation parameters,

one of which parametrises the RG flow in the bulk, whereas the other one parametrises the

induced flow in the boundary sectors. While these two flows are often treated simultane-

ously, we propose to perform the bulk flow first, while keeping the boundary regularisation

fixed. This is nothing but a bulk flow on the subdomain

Uǫ := {z ∈ Σ |dist(z, ∂Σ) ≥ ǫ} ⊂ Σ (2.3)

of all points on Σ whose distance from the boundary ∂Σ is bigger than the boundary

regularisation parameter ǫ. Hence, the endpoint of the pure bulk flow with fixed boundary

regularisation parameter is the IR theory on Uǫ separated by a conformal defect line from

the UV theory defined on the neighbourhood Σ − Uǫ of the boundary.

The second step, namely the flow in the boundary sector is then described by letting

ǫ go to zero, and in that way bringing the defect towards the boundary. This procedure

produces out of the UV boundary condition a boundary condition of the IR theory. How-

ever, a priori this is a singular process, because the defect is a non-topological defect in

general. That is not surprising. After all, the singularities appearing in the correlation

functions when the perturbing fields ϕi come close to the boundary have not been can-

celled by counterterms, because we have not performed the boundary RG flow. In fact,

all the singularities arising at the boundary due to the entire bulk flow are encoded in the

defect, and the process of taking the defect to the boundary has to be regularised in an

appropriate way to obtain the induced flow in the boundary sectors.

Note that the approach we propose to describe the effect of bulk perturbation on bound-

ary conditions is non-perturbative in the bulk coupling constants. Namely, the defect we

associate to a bulk perturbation connects directly UV and IR theories of the corresponding

RG flow. This obviously is an advantage, at least in the case where one can make sense

of the procedure of bringing the defect close to the boundary. On the other hand, it is

often not obvious how to connect perturbative and non-perturbative descriptions, i.e. how

to find the defect associated to a particular bulk perturbation.

The structure of fusion of non-topological defects with boundaries is a very interesting

subject, and has been considered for the case of the free boson in [25]. In this paper however

we will avoid all intricacies arising in this context by considering N = 2 superconformal

field theories. These theories can be topologically twisted, which in particular makes all

defects preserving the appropriate supersymmetries topological. That means that they can

be shifted on the surface without changing correlation functions, and in particular without
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giving rise to singularities when brought near boundaries or other defects. In this way

there is a well defined fusion of supersymmetry preserving defects with supersymmetric

boundary conditions or defects.

Our purpose in the following is to identify the supersymmetric defects associated to

supersymmetry preserving perturbations of N = 2 superconformal field theories in the way

described above. Their fusion with supersymmetric boundary conditions then describes to

which boundary conditions the latter flow in the IR.

There are two kinds of supersymmetry preserving perturbations one can consider in

N = 2 supersymmetric theories. Firstly there are pertrubations of the bulk action by chiral

superfields Φ integrated over the chiral half of superspace2

∆Sc =

∫

Σ
d2x dθ−dθ+ Φ|θ̄±=0 + c.c. . (2.4)

By construction, on surfaces without boundaries this perturbation leaves supersymmetry

unbroken. On surfaces with boundaries however this is no longer the case, and the variation

of the action gives rise to a boundary term [27, 26]. In case of an A-type boundary, this term

can be compensated by the supersymmetry variation of a boundary integral of the form

B = i

∫

∂Σ
ds(φ− φ̄) (2.5)

which can be added to the action in order to preserve supersymmetry. If the boundary is

of B-type, the boundary term cannot in general be cancelled in this manner, and pertur-

bations of type (2.4) induce non-supersymmetric boundary flows.

The second type of supersymmetric bulk perturbation is given by integrals

∆St =

∫

Σ
d2x dθ̄−dθ+ Ψ|θ̄+=θ−=0 + c.c. (2.6)

of twisted chiral superfields Ψ. In agreement with mirror symmetry, the boundary terms

resulting from varying the action can be cancelled for B-type boundaries, but not for A-type

ones.

Here, we are interested in bulk flows which also preserve supersymmetry in the bound-

ary sectors. Thus, we can consider either chiral perturbation in the presence of A-type

boundary conditions or twisted chiral perturbations in the presence of B-type boundary

conditions.3 As discussed above, performing the bulk RG flow while keeping the boundary

regularisation parameter ǫ fixed, one obtains the IR theory on a domain Uǫ ⊂ Σ and the

IR theory on the neighbourhood Σ − Uǫ of the boundary ∂Σ, which are separated by a

defect on ∂Uǫ.

Turning the arguments above around shows that perturbations with chiral superfields

on a domain U give rise to A-type defects, whereas perturbations with twisted chiral

2Conventions on superspace are taken from [26].
3In the context of non-linear sigma models with Kähler target space, this corresponds to perturbations of

the complex structure in the presence of A-branes or perturbations of the Kähler structure in the presence

of B-branes.
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superfields give rise to B-type defects. Therefore, to identify what happens to the respective

boundary conditions under a bulk flow, one first has to identify the corresponding A- or

B-type defect and then analyse its fusion with the boundary condition. As alluded to

above, the latter requires regularisation, but one can use supersymmetry to avoid dealing

with it explicitly. Since the flow is supersymmetric all along, one can consider it in the

topologically twisted theory, in which fusion of defects and boundary conditions is non-

singular. This permits to identify the flows of topological boundary conditions, which in

the situation we will consider here is enough to conclude the flows of the correspoding

supersymmetric boundary conditions in the full conformal field theories.

3. Setup and outline

In the following we will apply and test the method outlined in section 2 in the case of

orbifolds Md−2/Zd of N = 2 superconformal minimal models. These are well studied

rational conformal field theories at central charge c = 3(1 − 2
d). (A few details about

them are collected in appendix A). We are interested in perturbations which preserve

supersymmetry. As discussed in section 2 there are two types of such perturbations, chiral

and twisted chiral ones. The chiral ones are generated by (c, c)-chiral primary fields4 and

the twisted chiral ones by (a, c)-chiral primary fields. The corresponding perturbations

are marginal or relevant if these fields have conformal weights ≤ 1
2 . As it turns out, in

Md−2/Zd the (c, c)-chiral ring is trivial. But there are (a, c)-fields, which can be used to

perturb the theory. More precisely, for every i = 0, . . . d − 1 there is an (a, c)-field Ψi of

conformal weights hi = hi = i
2d < 1

2 , which can be obtained by spectral flow from the

unique Ramond ground state in the ith twisted sector of the theory. Ψ0 is the identity

field, but all the other ones generate relevant perturbations, which drive the theory in the

IR to another minimal model orbifold with smaller d however.

To understand these renormalisation group flows, the Landau-Ginzburg realisation of

the involved models is very useful. The minimal model Md−2 can be obtained as IR limit

of an N = 2 Landau-Ginzburg model with a single chiral superfield X and superpotential

W = Xd. The orbifold group Zd acts in the Landau-Ginzburg model by multiplication of

X by dth roots of unity, so that the orbifold model Md−2/Zd can be obtained as IR limit

of the corresponding Landau-Ginzburg orbifold.

The RG flows can now be formulated in the framework of gauged linear sigma models,

analogous to the flows between affine orbifold models C/Zd considered in [3]. We will

not describe this approach here. Instead, we will study the perturbation in the mirror

representation. The mirror of a minimal model orbifold Md−2/Zd is just the minimal

model Md−2 itself (see appendix A), and the mirror of the (a, c)-fields Ψi are the fields

corresponding to the monomials Xi in the superfield X of the associated Landau-Ginzburg

model. Thus, on the mirror side, perturbations generated by the Ψi are described by a

Landau-Ginzburg model with superpotential W = Xd deformed by lower order terms.

Not being homogeneous anymore, the deformed superpotential effectively flows under the

4We are only interested in unitary flows, so that we always perturb with a conjugation invariant operator.
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renormalisation group due to field redefinitions (see e.g. [3]). It flows to a homogeneous

superpotential corresponding to another conformal field theory.

As an example consider the perturbation of the orbifold model by the field Ψd′ . On the

mirror side this corresponds to deforming the superpotential W = Xd to W = Xd + λXd′ .

The RG flow has the effect of scaling the superpotential as W 7→ Λ−1W . Accompanied by a

field redefinitionX 7→ Λ
1
dX, this yields a running coupling constant λ(Λ) = λ0Λ

d′−d
d . In the

UV (Λ → ∞) the coupling goes to zero, whereas in the IR (Λ → 0), the coupling diverges.

Hence, this describes a flow between the Landau-Ginzburg models with superpotentials

W = Xd in the UV and the one with W = Xd′ in the IR. Therefore, the relevant operator

Ψd′ induces an RG flow between the orbifolds Md−2/Zd and Md′−2/Zd′ .

Our aim is to study flows of this type, and in particular their effect on boundary

conditions using defects between the minimal model orbifolds in UV and IR. Such defects

cannot be topological, because the two conformal field theories are connected by a relevant

flow and hence have different central charge. The construction of non-topological defects

between conformal field theories is difficult, but since the flows preserve supersymmetry

also the defects have to be supersymmetric. More precisely, being generated by twisted

chiral fields, the flows give rise to B-type defects (c.f. section 2). Thus we can make use of

a nice description of B-type defects between Landau-Ginzburg models in terms of matrix

factorisations of the the difference of the respective superpotentials [18]. This formalism

not only lends itself easily to the construction of defects, but also to the analysis of their

fusion and their fusion with B-type boundary conditions, which are also represented in

terms of matrix factorisations [28 – 31].

To be applicable to the study of defects between minimal model orbifolds, it has to be

generalised to orbifolds of Landau-Ginzburg models. Similarly to B-type boundary condi-

tions [32, 33], also B-type defects between Landau-Ginzburg orbifolds are described by ma-

trix factorisations which are equivariant with respect to the action of the orbifold group, and

properties like fusion generalise in a straight forward manner. This is discussed in section 4.

With this formalism at hand, in section 5 we construct a class of defects between

minimal model orbifolds Md−2/Zd with different d which we propose to arise in renormal-

isation group flows between these theories. This class of defects closes under fusion, i.e.

the fusion of such a defect between minimal model orbifolds Md−2/Zd and Md′−2/Zd′ and

one between Md′−2/Zd′ and Md′′−2/Zd′′ is a defect between Md−2/Zd and Md′′−2/Zd′′

of the same type. This fusion of defects indeed corresponds to the concatenation of renor-

malisation group flows.

As alluded to above, the flows we are interested in can be very explicitly studied in

the mirror Landau-Ginzburg models, where they are just given by deformations of the

superpotential. In particular, this can be used to investigate what happens to B-type

boundary conditions in Md−2/Zd under the flows. Namely, the corresponding mirror A-

type boundary conditions have a very nice geometric interpretation as Lefshetz pencils of

the superpotential W [27], whose behaviour under deformations of W can be determined

explicitly. In section 6 we compare these flows to the fusion of our special defects with

B-type boundary conditions calculated in section 5 and find complete agreement. This

– 8 –
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provides strong evidence for our claim that the special defects indeed are the ones which

arise in the renormalisation group flows between different minimal model orbifolds.

As alluded to above, the flows between minimal model orbifolds Md−2/Zd 7→
Md′−2/Zd′ studied here are very similar to flows between affine orbifold models C/Zd 7→
C/Zd′ . In section 7 we argue that our special defects between Md−2/Zd have counterparts

in the affine orbifolds C/Zd, which describe the corresponding flows there.

4. B-type defects in Landau-Ginzburg orbifolds

Although the method described in section 2 above can be applied to study supersymmetric

bulk flows of any theory with N = 2 supersymmetry, we will restrict our further discussion

to (a, c)-perturbations of Landau-Ginzburg orbifold models. These can be described by

means of B-type defects, and they remain supersymmetric on surfaces with boundary as

long as B-type boundary conditions are imposed. B-type boundary conditions for Landau-

Ginzburg models of chiral superfields Xi can be represented by matrix factorisations of the

superpotential W (Xi) [28 – 31].

In [18], see [16, 17, 34] for earlier work in a different context, it was shown that

likewise B-type defects between two Landau-Ginzburg models with chiral superfields Xi

and Yi and superpotentials W1(Xi) and W2(Yi) respectively can be described by means of

matrix factorisations

P : P1

p1

⇄
p0

P0 , (4.1)

p1p0 = (W1(Xi) −W2(Yi))idP0 , p0p1 = (W1(Xi) −W2(Yi))idP1 .

of the difference W1(Xi)−W2(Yi) of superpotentials. Here pi are homomorphisms between

the free S = C[Xi, Yi]-modules Pi.

In this section, we will extend the methods developed for Landau-Ginzburg defects

to the case of Landau-Ginzburg orbifolds, in which defects can be represented by equiv-

ariant matrix factorisations. In particular fusion of defects and of defects with boundary

conditions will be formulated in this formalism.

4.1 Defects and equivariant matrix factorisations

In the same way as for boundary conditions [32, 33] the matrix factorisation formalism for

defects can be generalised to orbifolds of Landau-Ginzburg models. Namely, let Γ1 and Γ2

be orbifold groups of the respective LG models, i.e. Γ1 acts on C[Xi] and Γ2 on C[Yi] in a way

compatible with multiplication in these rings, such that W1(Xi) and W2(Yi) are invariant.

A defect between the respective Landau-Ginzburg orbifolds is then given by a Γ := Γ1×
Γ2-equivariant matrix factorisation of W1(Xi)−W2(Yi). The latter is a matrix factorisation

(4.1) together with representations ρi of Γ on the modules Pi which are compatible with

the S-module structure and with the maps pi. That means that the Γ-action on the Pi

defined by ρi satisfies

ρi(γ)(s · p) = ρ(γ)(s) · ρi(γ)(p) , ∀γ ∈ Γ , s ∈ S , p ∈ Pi , (4.2)

– 9 –
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where ρ denotes the action of Γ on S, and that furthermore the maps pi commute with

the actions ρi:

ρ0(γ)p1 = p1ρ1(γ) , ρ1(γ)p0 = p0ρ0(γ) , ∀γ ∈ Γ . (4.3)

More details on equivariant matrix factorisations can be found e.g. in [32, 33].

In the cases we are interested in here, the orbifold groups are commutative. In par-

ticular, their action give the polynomial rings S the structure of graded rings, and the

representations ρi turn the Pi into graded S-modules. Compatibility furthermore ensures

that the maps pi respect the grading, i.e. they are graded of degree 0. Matrix factorisa-

tions which are equivariant with respect to an abelian group action are therefore sometimes

referred to as graded matrix factorisations.

Note that not all matrix factorisations P admit such representations ρi. Since the Pi are

free S-modules, compatibility with the S-action is easily achieved, but the compatibility

with the homomorphisms pi is a non-trivial constraint. However, there is a standard

procedure to construct from any matrix factorisation P a Γ-equivariant one by the orbifold

construction, known for instance from the construction of boundary conditions in general

orbifold theories from boundary conditions in the underlying non-orbifolded models. Given

any matrix factorisation P , one considers the normal subgroup Γ′ ⊂ Γ, which stabilises the

matrix5 p1, hence also p0, up to change of basis. Then one chooses a representation of Γ′

on P , and extends it to a Γ-representation of the matrix factorisation given by the sum of

the Γ/Γ′-orbit6 of P

p̃i :=
⊕

γ∈Γ/Γ′

γ(pi) , P̃i = C[Γ/Γ′] ⊗ Pi . (4.4)

This obviously defines an equivariant matrix factorisation of W1(Xi) −W2(Yi).

Given two Γ-equivariant matrix factorisations, the compatibility properties of the rep-

resentations ρi ensure that the Γ-action lifts to an action on the corresponding BRST-

cohomology groups of the matrix factorisations. The BRST-cohomology groups in the

orbifold theories are then given by the Γ-invariant subgroups of the BRST-cohomology

groups of the underlying matrix factorisations:

H∗
orb(P,Q) = (H∗(P,Q))Γ . (4.5)

4.2 Fusion

The most important property of defects which we will use is their fusion. The fusion of

B-type defects in Landau-Ginzburg models has been discussed in [18]. Let us consider the

situation of three LG models with chiral superfields Xi, Yi, Zi and superpotentials W1(Xi),

W2(Yi) and W3(Zi) respectively. A B-type defect between the first two of these models can

be fused with a B-type defect of the last two giving rise to a B-type defect between the first

and the last of these models. On the level of matrix factorisation this can be described as

follows. The first of these defects can be represented by a matrix factorisation P ofW1(Xi)−
5The pi are matrices with entries in S, on which Γ acts.
6The group Γ/Γ′ acts on the matrix factorisations stabilised by Γ′.
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W2(Yi), whereas the second one is described by a matrix factorisation Q ofW2(Yi)−W3(Zi).

The defect obtained by fusion of the two can now be represented by the matrix factorisation

P ∗Q, which is defined to be the tensor product matrix factorisation P ⊗Q

(P ⊗Q)1 = (P1 ⊗Q0) ⊕ (P0 ⊗Q1)
r1

⇄
r0

(P0 ⊗Q0) ⊕ (P1 ⊗Q1) = (P ⊗Q)0

with r1 =

(
p1 ⊗ idQ0 −idP0 ⊗ q1
idP1 ⊗ q0 p0 ⊗ idQ1

)
, r0 =

(
p0 ⊗ idQ0 idP1 ⊗ q1
−idP0 ⊗ q0 p1 ⊗ idQ1

)
, (4.6)

regarded as a matrix factorisation over S′ = C[Xi, Zi]. Here, by abuse of notation the tensor

products between Pi and Qj denote the tensor products Pi⊗C[Xi,Yi]C[Xi, Yi, Zi]⊗C[Yi,Zi]Qj.

Obviously, the matrix factorisation P ⊗Q is a matrix factorisation of W1(Xi) −W2(Yi) +

W2(Yi)−W3(Zi) = W1(Xi)−W3(Zi). The bulk fields Yi of the theory squeezed in between

the original defects give rise to new defect degrees of freedom. Hence, P ∗Q represents a

defect between the LG models with superpotentials W1(Xi) and W3(Zi) which a priori can

however be of infinite rank. This happens, because the tensor product will in general still

contain the variables Yi. Interpreting C[Xi, Yi, Zi] as an infinite dimensional C[Xi, Zi] mod-

ule gives infinite rank to matrices that contain Yi. As was shown in [18], the factorisations

P ∗Q are always equivalent to finite rank factorisations, provided P and Q are of finite rank.

The generalisation of the matrix factorisation representation of fusion to Landau-

Ginzburg orbifolds is straight forward. The same arguments as in non-orbifolded Landau-

Ginzburg models leads one to consider the tensor product matrix factorisation P ⊗Q. But

now, P and Q are equivariant with respect to Γ1 × Γ2 and Γ2 × Γ3 respectively. Thus,

P ⊗ Q is equivariant with respect to Γ1 × Γ2 × Γ3. Again P ⊗ Q has to be regarded as

(Γ1×Γ3 equivariant) matrix factorisation over C[Xi, Zi], because the Yi become new defect

degrees of freedom. Just like for the BRST-cohomology, the orbifold causes a projection

onto Γ2-invariant degrees of freedom. Thus

P ∗orb Q = (P ∗Q)Γ2 . (4.7)

This discussion easily extends to fusion of B-type defects with B-type boundary conditions.

For this, one only has to replace the matrix factorisation Q above by a Γ2-graded matrix

factorisation of W2(Yi) which represents a boundary condition in the LG model with su-

perpotential W2(Yi). P ∗orb Q is then a Γ1-equivariant matrix factorisation of W1(Xi) and

represents a boundary condition in the corresponding LG orbifold.

4.3 Quantum symmetry defects in Xd/Zd

As an example let us discuss defects between one and the same Landau-Ginzburg orbifold

with only one chiral superfield X, superpotential W (X) = Xd and orbifold group Γ = Zd

acting on X by

X 7→ ξaX , a ∈ Zd , (4.8)

where ξ is an elementary dth root of unity. A simple defect in the unorbifolded LG model

is the identity defect which can be represented by the matrix factorisation [18]

P : P1 = S
p1=(X−Y )

⇄

p0=
Q

i6=0(X−ξiY )
S = P0 , (4.9)
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with S = C[X,Y ]. To obtain out of this a Γ × Γ-equivariant matrix factorisation, one can

use the orbifold construction described above. The subgroup stabilising P is given by the

diagonal subgroup Γdiag ⊂ Γ × Γ. Thus, the first step is to choose a Γdiag
∼= Zd represen-

tation on P . This is done by specifying the Zd representation m on the subspace spanned

by 1 ∈ P0
∼= S, which by compatibility with the S-action extends to a representation on

P0, and which by compatibility with the maps pi determines a representation on P1. One

obtains the Γdiag-equivariant matrix factorisation

S[m+ 1]
p1=(X−Y )

⇄

p0=
Q

i6=0(X−ξiY )

S[m] . (4.10)

The Γ/Γ′ ∼= {1} × Γ-orbit of this matrix factorisation yields the Γ × Γ-equivariant matrix

factorisation (we only specify p̃1 here)

p̃1 =
⊕

i∈Zd

(X − ξiY ) : (S[m+ 1])⊕d → (S[m])⊕d . (4.11)

The representation of Γ× Γ on P̃0 is determined by the representation ρ0 on the subspace

P 0 = C[m]⊕d ⊂ (S[m])⊕d. It is given by

(a, b) ∈ Zd × Zd : ρ0(a, b) = ξamidP 0
+ ǫb−a , (4.12)

where ǫ is the d× d-matrix defined by ǫi,j = δ
(d)
i−j−1. It is now easy to diagonalise ρi on P i.

In the corresponding eigenbasis the equivariant matrix factorisation P̃m(X,Y ) reads

p̃m
1 =




X −Y

−Y
. . .
. . .

. . .

−Y X




: Sd




[m+1,0]

...

[m+d,−d+1]


 −→ Sd




[m,0]

...

[m+d−1,−d+1]


 , (4.13)

where now [·, ·] denotes an irreducible Γ × Γ-representation defined on the respective

subspaces of P i.

What we have seen in particular is that the identity defects P of the unorbifolded

theory breaks up into d different defects P̃m of the Zd orbifold. One expects of course that

one of them can be identified as the identity defect of the orbifold. We will now show that

the P̃m realise the Zd group of quantum symmetries of the orbifold theory.

To see this, we first calculate the fusion of two such defects represented by matrix

factorisations P = P̃m(X,Y ) and Q = P̃m′
(Y,Z). As discussed above, the result of

the composition is given by P ∗orb Q, the Zd-invariant part of the tensor product matrix

factorisation P ⊗ Q. Indeed, as in the unorbifolded situation, there is a trick, which

simplifies the calculation of the fusion. Namely, the tensor product matrix factorisation

is equivalent to the matrix factorisation arising after two steps out of a C[X,Z]-free two-

periodic resolution of the module [18]

M = coker(p1 ⊗ idQ0, idP0 ⊗ q1) , (4.14)
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and the Zd-invariant part is equivalent to the matrix factorisation arising in the same way

out of MZd . In order to calculate MZd , let us first note that P0 ⊗ Q0 is generated over

Ŝ = C[X,Y,Z] by ea,b = ePa ⊗ eQb of Γ3-degree [m + a,−a + m′ + b,−b], where (ePa )a∈Zd

and (eQb )b∈Zd
are generating systems of P0 and Q0 respectively. Generators of P0 ⊗Q0 over

S′ = C[X,Z] are given by eia,b = Y iea,b. The relations in M coming from p1 ⊗ idQ0 and

idP0 ⊗ q1 in this basis read

ei+1
a+1,b = Xeia,b , ei+1

a,b = Zeia,b+1 ∀i ≥ 0 . (4.15)

The second of these relations can be used to eliminate all eia,b for i > 0 from the generating

system of M . The remaining relations then become

Xe0a,b = Ze0a+1,b+1 . (4.16)

Hence M is generated by e0a,b subject to these relations. Moreover, MZd is generated by

those generators, which are Zd-invariant (with respect to the second Zd), i.e. fa := e0a,a−m′

subject to the relations

Xfa = Zfa+1 . (4.17)

Moreover, the Zd × Zd degree of fa is given by [m+ a,m′ − a]. Therefore

MZd = coker(p̃m+m′

1 (X,Z)) , (4.18)

and MZd has a S′-free resolution given by P̃m+m′
(X,Z). Hence for the fusion we obtain

P̃m(X,Y ) ∗orb P̃
m′

(Y,Z) = P̃m+m′

(X,Z) . (4.19)

Indeed the P̃m form a Zd-group under fusion.

We will now check that the action of the defects on boundary conditions reproduces

the action of the Zd of quantum symmetries. Boundary conditions in this model are

described by Zd-equivariant matrix factorisations of W . These can be decomposed into

the irreducible ones

Q(M,N)(X) : Q1 = C[X][M +N ]
q1=XN

⇄

q0=Xd−N

Q0 = C[X][M ] , (4.20)

for (M,N) ∈ Id = Zd × {0, . . . , d − 1}. The quantum symmetries act on these matrix

factorisations by shifting the Zd-representation label M .

To calculate the fusion P ∗orb Q for P = P̃m(X,Y ) with Q = Q(M,N)(Y ) we follow

the same path as before. The module M = coker(p1 ⊗ idQ0, idP0 ⊗ q1) is generated over

S′ = C[X] by eia = Y iePa ⊗ eQ of Zd × Zd-degree [m+ a,−a+M + i] with relations

ei+1
a+1 = Xeia , eN+i

a = 0 , ∀i ≥ 0 . (4.21)

The first set of relations can again be used to reduce the generating system to e0a, and the

remaining relations are

XNe0a−N = 0 . (4.22)
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The only Zd-invariant generator is e0M , hence

MZd = coker(q
(m+M,N)
1 (X)) , (4.23)

which therefore has an S′-free resolution given by Q(m+M,N)(X). We arrive at

P̃m(X,Y ) ∗orb Q
(M,N)(Y ) = Q(M+m,N)(X) . (4.24)

In particular the defects corresponding to P̃m are the generators of the quantum Zd-

symmetry in the LG orbifold, and the one for m = 0 is the identity defect.

The construction of these defects (and a more general class of topological defects) is

indeed also straight forward on the level of conformal field theory. We have presented it

in appendix A.

5. A special class of defects between Xd/Zd and Xd′

/Zd′

In the following we will focus our attention to orbifolds of Landau-Ginzburg models with

one chiral superfield X and superpotential W = Xd for some d. The orbifold group Γ = Zd

acts on X by multiplication with dth roots of unity.

In this section we will define a special class of B-type supersymmetric defects between

such models by constructing a class of Zd′ × Zd-graded matrix factorisations of Y d′ −Xd.

We will then determine their fusion among themselves and their fusion with B-type

boundary conditions.

5.1 Construction

The matrix factorisations defining the special defects are determined by irreducible rep-

resentations m of Zd and a d′-tuple of integers n = (n0, . . . , nd′−1), ni ∈ N0 such that∑
i ni = d. We will denote the set of all such pairs (m,n) by Id′,d. Given an n as above,

define the following d′ × d′-matrix

(Ξn)a,b := δ
(d′)
a,b+1X

na . (5.1)

This matrix has the property that

Ξd′

n = Xdidd′ (5.2)

and hence can be used to construct matrix factorisations of Y d′ −Xd by means of

(
Y d′ −Xd

)
idd′ =

d′−1∏

i=0

(
Y idd′ − ξiΞn

)
, (5.3)

where ξ is an elementary d′th root of unity. In particular choosing a subset I ⊂ {0, . . . , d′−
1} one obtains a matrix factorisation of Y d′ −Xd by grouping together the corresponding

factors into one matrix and the ones corresponding to the complement into the other:

p1 =
∏

i∈I

(Y idd′ − ξiΞn) , p0 =
∏

i∈{0,...,d′−1}−I

(Y idd′ − ξiΞn) . (5.4)
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This matrix factorisation is Zd′ × Zd gradable. The grading is determined by the grading

of a single factor (Y idd′ − ξiΞn). In particular, the grading of any matrix factorisation of

type (5.4) can be obtained from the grading of the matrix factorisation with I = {0} on

which we will focus now. For I = {0}, given (m,n) ∈ Id′,d, the respective graded matrix

factorisation P (m,n) = P
(m,n)
{0} is defined by

p
(m,n)
1 = (Y idd′ − Ξn) =




Y −Xn0

−Xn1
. . .
. . .

. . .

−X
n

d′−1 Y




: P1 −→ P0 , (5.5)

where

P1 = Sd′




[1,−m]

[2,−m−n1]

[3,−m−n1−n2]

...
h
d′,−m−

Pd′−1
i=1 ni

i



, P0 = Sd′




[0,−m]

[1,−m−n1]

[2,−m−n1−n2]

...
h
d′−1,−m−

Pd′−1
i=1 ni

i



. (5.6)

Here S = C[X,Y ], and [·, ·] denotes the Zd′ × Zd-degree. Note that because we are in the

orbifold category, symmetry operations X 7→ ηiX, Y 7→ ξjY , where η is an elementary dth

root of unity act trivially on the matrix factorisations above.

5.2 Fusion of defects

Let us consider two matrix factorisations of the type defined in (5.5). For (m,n) ∈ Id′,d

and (m̃, ñ) ∈ Id′′,d′ let

P := P (m,n)(Y,X) , Q := P ( em,en)(Z, Y ) (5.7)

be the respective graded matrix factorisations of Y d′ − Xd and Zd′′ − Y d′ respectively.

We would like to calculate the fusion of the respective defects. As discussed in section 4

the fused defect can be represented by the Zd′-invariant part of the tensor product matrix

factorisation P ⊗ Q regarded as matrix factorisation over S′ := C[X,Z]. By the usual

trick [18] which has already been used in the discussion of the fusion of the quantum

symmetry defects in section 4.3 it can be obtained as the matrix factorisation associated

to the Zd′-invariant part of the module

M = coker(p1 ⊗ idQ0, idP0 ⊗ q1) . (5.8)

Here as in section 4.3 above, by abuse of notation Pi ⊗ Qj denotes the tensor product

over Ŝ = C[X,Y,Z] of the respective Ŝ-modules Pi ⊗C[X,Y ] Ŝ and Qi ⊗C[Y,Z] Ŝ, and M is

regarded as an S′-module.

In order to analyse M , let us denote by (ePa )a∈Zd′
the free generators of P0 of Zd′ ×Zd-

degrees [ePa ] = [a,−m −∑a
i=1 ni], and by (eQb )b∈Zd′ ′

the generators of Q0 with Zd′′ × Zd′-

degree [eQb ] = [b,−m̃ −∑b
i=1 ñi]. We define the corresponding generators ea,b := ePa ⊗ eQb
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of P0 ⊗Q0 of Zd′′ × Zd′ × Zd-degree

[ea,b] =

[
b, a− m̃−

b∑

i=1

ñi,−m−
a∑

i=1

ni

]
. (5.9)

As an S′ = C[X,Z]-module, P0 ⊗ Q0 is generated by eja,b := Y jea,b. In this basis the

relations in M coming from p1 ⊗ idQ0 can be written as

ej+1
a,b = Xna+1eja+1,b ∀j ∈ N0 . (5.10)

They imply

eja,b = X
Pj

i=1 na+ie0a+j,b , (5.11)

and can hence be used to eliminate eja,b with j > 0 from the generating system of M .

The relations coming from idP0 ⊗ q1 on the other hand read

Zeja,b = e
j+enb+1

a,b+1 ∀j ∈ N0 . (5.12)

Using (5.11) they become

ZX
Pj

i=1 na+ie0a+j,b = X
Pj+enb+1

i=1 na+ie0a+j+enb+1,b+1 ∀j ∈ N0 . (5.13)

Obviously, the relations (5.13) for j > 0 follow from the ones with j = 0, so that M is

isomorphic to the S′-module generated by e0a,b subject to the relations

Ze0a,b = X
Penb+1

i=1 na+ie0a+enb+1,b+1 . (5.14)

In particular, MZd′ is isomorphic to the S′-module generated by the Zd′-invariant

generators

fb := eem+
Pb

j=1 enj ,b (5.15)

subject to the relations

Zfb = X

Penb+1
i=1 n em+

Pb
j=1

enj+ifb+1 . (5.16)

These relations can indeed be represented by a matrix of type (5.5). More precisely

MZd′ ∼= coker
(
p
( bm,bn)
1 (X,Z)

)
(5.17)

with (m̂, n̂) ∈ Id′′,d given by

m̂ = m+

em∑

i=1

ni , n̂b+1 =

enb+1∑

i=1

n em+
Pb

j=1 enj+i . (5.18)

Therefore, the class of defects defined by matrix factorisations (5.5) is closed under fusion.

For every (m,n) ∈ Id′,d and (m̃, ñ) ∈ Id′′,d′ fusion is given by

P ( em,en) ∗ P (m,n) = P ( bm,bn) , (5.19)

– 16 –



J
H
E
P
0
4
(
2
0
0
8
)
0
0
1

where (m̂, n̂) =: (m̃, ñ) ∗ (m,n) ∈ Id′′,d is defined by (5.18). Indeed, it is not difficult to

see that for every (m̂, n̂) ∈ Id′,d there exist (mi, ni) ∈ Id+i+1,d+i, 0 ≤ i < d′ − d such that

(m̂, n̂) = (md′−d, nd′−d) ∗ . . . ∗ (m0, n0). (5.20)

That means that every defect P ( bm,bn) between Landau-Ginzburg orbifolds Xd/Zd and

Xd′/Zd′ can be obtained by fusion of |d′ − d| defects between Landau-Ginzburg orbifolds

with |d − d′| = 1. This will become more evident using a pictorial representation of these

defects which will be introduced in section 5.4 below after the discussion of their action

on boundary conditions.

It is also easy to calculate the fusion of the defects P (m,n) with the defects P̃m repre-

senting the quantum symmetries. One obtains

P̃m′′ ∗ P (m,n) ∗ P̃m′

= P ( bm,bn) , (5.21)

m̂ = m+m′ +

{−m′′}d′∑

j=1

nj , n̂ = (n̂0, . . . , n̂d′) = (n−m′′ , n−m′′+1, . . . , nd′−m′′−1) .

5.3 Fusion of defects and boundary conditions

Next, we would like to calculate what happens to B-type boundary conditions in Landau-

Ginzburg orbifolds Xd/Zd upon fusion with a defect represented by P (m,n) for some

(m,n) ∈ Id′,d. B-type boundary conditions in this model can be represented by Zd-graded

matrix factorisations of Xd. As already mentioned in section 4, the latter can be decom-

posed into sums of the irreducible matrix factorisations

Q(M,N) : Q1 = C[X][M +N ]
q1=XN

⇄

q0=Xd−N

Q0 = C[X][M ] , (5.22)

for (M,N) ∈ Id = Zd × {0, . . . , d − 1}. Thus, it is sufficient to determine the fusion of

P (m,n) with these.

Similar to the case of fusion of defects also the boundary condition created by fusing

the defect associated to P = P (m,n) with the boundary condition associated to Q = Q(M,N)

is represented by the matrix factorisation obtained from the Zd-invariant submodule of

M = coker(p1 ⊗ idQ0, idP0 ⊗ q1) (5.23)

regarded as S′ = C[Y ]-module. We denote the S = C[X,Y ]-free generators of P0 ⊗Q0 by

ea, a ∈ Zd′ . They have Zd′×Zd-degree [a,−m−∑a
i=1 ni+M ]. S′-free generators of P0⊗Q0

are given by eia = Xiea, i ≥ 0. In this generators, the relations in M can be written as

Y eia = e
i+na+1

a+1 , eN+i
a = 0 . (5.24)

By means of these relations, one can reduce the set of generators to those eia with 0 ≤ i ≤
min(N,na) − 1. The Zd-invariant ones are the ones with

i = i(a) =



m−M +

a∑

j=1

nj





d

, (5.25)
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where {z}d denotes the representative in Z of z ∈ Zd which lies in [0, d − 1]. A generator

e
i(a)
a contributes to MZd iff i(a) < min(N,na). Using the relation

Y keia = e
i+

Pk
j=1 na+j

a+k (5.26)

one easily obtains that e
i(a)
a generates a submodule with relation

Y kei(a)
a = 0 , ∀k : i(a) +

k∑

j=1

na+j ≥ N . (5.27)

The Zd′-degree of this generator is given by [e
i(a)
a ] = [a]. Hence

MZd ∼=
⊕

a∈Zd′ : i(a)={m−M+
Pa

j=1 nj}d<min(N,na)

coker
(
q
(a,k(a))
1

)
, (5.28)

where

k(a) = min

{
j > 0 | i(a) +

j∑

k=1

na+k ≥ N

}
. (5.29)

In particular, the fusion reads

P (m,n) ∗Q(M,N) =
⊕

a∈Zd′ : i(a)={m−M+
Pa

j=1 nj}d<min(N,na)

Q(a,k(a)) . (5.30)

Indeed, for all (m,n) ∈ Id′,d and (M,N) ∈ Id this sum has at most one summand. This

can easily be seen as follows. Suppose i(a) < na for some a ∈ Zd′ , giving rise to a possible

summand in (5.30). Then

i(a′) = i(a) +

{a′−a}d′∑

j=1

na+j , (5.31)

because from i(a) < na it follows that the right hand side is < d for all a′. Since now all

the summands are non-negative this implies that i(a′) ≥ na′ for all a′ 6= a, and therefore

no a′ 6= a can contribute to the sum in (5.30).

However, the sum in (5.30) can be empty if there exist ni ≥ 2. More precisely, for each

ni ≥ 2 matrix factorisations Q = Q(M,N) are annihilated7 by P (m,n), iff

N ≤ ni − 1 ,M ∈ (m+ 1 + n1 + · · · + ni−1) + {0, . . . , ni −N − 1} . (5.32)

This can be seen by considering the set J := {i(a) | a ∈ Zd′} of possible values of i(a). J
is a subset of Zd, and its complement is given by

J c = (m−M+1)+
(
[0, n1−2]∪(n1+[0, n2−2])∪. . .∪(n1+· · ·+nd−1+[0, nd−2])

)
. (5.33)

7Note that since the supersymmetric boundary conditions in the models at hand are classified, one im-

mediately obtains that the fusion of the respective defects and boundary conditions also vanishes identically

in the full conformal field theory, provided this fusion is regularised in a supersymmetric way.
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In particular for M = m+ 1 + n1 + · · · + ni−1 + r, 0 ≤ r ≤ ni −N − 1

J c = (−n1 − · · · − ni−1 − r + [0, n1 − 2]) ∪ . . . ∪ (−r + [0, ni − 2]) ∪ (5.34)

∪ . . . ∪ (−r + ni + · · · + nd−1 + [0, nd − 2]) .

But this means that for all a ∈ Zd′ i(a) > ni − 2 − r ≥ N − 1, i.e. i(a) ≥ N for all a, and

hence the sum in (5.30) is empty.

Let us suppose now, that Q(M,N) is not annihilated. This means that

J ∩ {0, . . . , N − 1} = {i1, . . . , il} 6= ∅ . (5.35)

Assume i1 = i(a1) is the smallest of the ij (considered as elements of Z in the range

{0, . . . , d − 1}). Then, i1 < na1 , because otherwise 0 ≤ i1 − na1 < i1 would also be an

element of the set above. Hence

P (m,n) ∗Q(M,N) = Q(a1,k(a1)) . (5.36)

This formula looks rather implicit, but there is a nice pictorial way to understand it, which

we will discuss in the next section.

5.4 Pictorial representation of defect action

Let us for the moment restrict the discussion to those P = P (m,n) with ni ≥ 1 for all i.

This implies in particular d ≥ d′. Obviously this property is preserved under fusion. The

first thing to note is that under this assumption the action of P on a matrix factorisation

Q(M,N) does not increase N , which is obvious from (5.29). This implies in particular that

under the fusion with P , Q(M,1) is either annihilated or it is mapped to Q(M ′,1) for some

M ′ ∈ Zd′ . The ones which are not annihilated are the ones such that there exists an a ∈ Zd′

with i(a) = 0, i.e. those with

M ∈ m+ {0, n1, n1 + n2, . . . , n1 + · · · + nd′−1} =: L(m,n) , (5.37)

and for M = m+
∑a

j=1 nj one obtains M ′ = a. Summarising, for the action of P on the

N = 1 boundary conditions we get

P (m,n) ∗Q(M,1) =

{
0 , if M /∈ m+ {∑a

i=1 ni | 0 ≤ a < d′}
Q(a,1) , if M = m+

∑a
i=1 ni

. (5.38)

This suggest the following picture for the action of the defects P on the Q(M,1). Consider

a disk subdivided by straight lines from its center to its boundary into d sectors. Mark

one of the straight lines, and denote the sectors by S0 to Sd−1 going in counterclockwise

direction and starting from the marked line (c.f. figure 2a). In this picture we represent

matrix factorisations Q(M,1) by the Mth sector SM .

Now we can consider the following pictorial operations. The first rather trivial one Tm

is the shift of the marking to the −mth line in counterclockwise direction, which just corre-

sponds to the quantum symmetry Q(M,1) 7→ Q(M+m,1) (c.f. figure 3a). A more interesting
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Figure 2: a) Disk subdivided into d sectors Si representing boundary conditions Q(i,1). b) Union

of consecutive sectors represent boundary conditions Q(M,N) with N > 1, e.g. S2 ∪ S3 representing

boundary condition Q(2,2).

S2

S4

S0

S1

S3

S2

S4

S0

S1

S3

S’0

S’2

S’3

S’1

S’1

S’3

S’0

S’2

S’4

a)

b)

Figure 3: Diskoperations: a) T−1: marked line shifted by 1, Si 7→ S′
i−1, b) S{1}: sector S1 shrunken

to zero, S0 7→ S′
0, S1 7→ 0, Si 7→ S′

i−1 for 1 < i ≤ 4.

operation is the operation S{s1,...,sd−d′}
, which shrinks to zero the sectors Ssi

by bringing

together the lines bounding them. In this way, from a disk subdivided into d sectors SM

one obtains a disk subdivided into d′ sectors S′
M ′ again counted in counterclockwise di-

rection from the marked line (c.f. figure 3b). By means of the identification of boundary

conditions Q(M,1) with sectors SM the operation of P (m,n) in (5.38) can be written as

O(m,n) = SLc
(m,n)

−mT−m = T−a(m,n)
SLc

(m,n)
, (5.39)

where Lc
(m,n) is the complement of the set L(m,n) of Zd-labels of the non-annihilated N = 1-

boundary conditions. a(m,n) := |{0, . . . ,m} ∩ L(m,n)| is the number of segments before the

mth one which are not shrunken.

Indeed, this pictorial representation of the action of P (m,n) generalises to the action on

all boundary conditions if one representsQ(M,N) for arbitraryN by the union8 of the sectors

8The decomposition of such a union into its constituents indeed corresponds to the D-brane charge
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SM ∪SM+1 ∪ . . .∪ SM+N−1 (c.f. figure 2b). This can be seen as follows. Consider first the

situation, in which the pictorial operation deletes all the sectors belonging to the pictorial

representation of a given boundary condition Q(M,N), i.e. the set {M,M+1, . . . ,M+N−1}
is completely contained in Lc

(m,n). In this case, by definition, i(a) ≥ N for all a, and hence

by (5.30) Q(M,N) is annihilated by P . Thus, the pictorial action (5.39) agrees with the

action of P . If on the other hand, the pictorial operation does not delete all segments

belonging to the boundary condition Q(M,N), then as in (5.35)

L(m,n) ∩ {M,M + 1, . . . ,M +N − 1} = J ∩ {0, . . . , N − 1} = {i1, . . . , il} 6= ∅ , (5.40)

and P does not annihilate Q(M,N). The result of the fusion has already been stated in

(5.36). Since ni ≥ 1 for all i, we obviously obtain k(a1) = l. But this is exactly the number

of those segments of the pictorial representation of Q(M,N), which are not annihilated by P .

Furthermore, a1 is the number of Q(M ′,1) with M ′ ∈ {m, . . . ,M} which are not annihilated

by P . Thus, also in this case (5.39) applied to the pictorial representation of Q(M,N) is

nothing but the pictorial representation of the result (5.36) of the fusion of P and Q(M.N).

This shows that indeed O(m,n) represents the action of P (m,n) on all boundary conditions.

In fact, a similar picture also describes the action of P = P (m,n) where na = 0 is

allowed. In this case one has to replace the pictorial action (5.39) by

Õ(m,n) = S̃(m,n)T−m , (5.41)

where now S̃(m,n) not only deletes all the segments SM for which M is not in the image

of the map

ı̃(a) =

a∑

j=1

nj , (5.42)

but in addition it also splits up every segment SM into |̃ı−1(M)| segments. Thus, not only

are ni − 1 segments deleted for each i with ni > 1, but also a new segment is created for

each i with ni = 0. For the flows between minimal model orbifolds however, only those

defects P (m,n) with ni ≥ 1 play a role.

6. Defects and bulk flows between minimal model orbifolds

We propose that the defects presented in section 5 above arise in the way described in

section 2 in supersymmetric bulk flows between orbifolds Md−2/Zd of N = 2 superconfor-

mal minimal models. To give evidence for this proposal, we will analyse these flows in the

mirror Landau-Ginzburg models in the following, and compare them to the fusion of the

defects P (m,n) calculated in section 5.

6.1 Flows in the mirror Landau-Ginzburg models

As mentioned in section 3, in the mirror LG models, the flows we are interested in corre-

spond to lower order deformations Wλ of the superpotential W = Wλ=0 = Xd. We would

decomposition.
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Figure 4: Polynomial of degree 4 with two critical points x∗1 and x∗2 of degrees o(x∗1) = 1 and

o(x∗2) = 2 respectively. a) Paths γi between critical values p(x∗i ) and base point b and their lifts γ̃µ
i

to the preimage of p. b) Schematic representation.

like to describe what happens to the corresponding A-type D-branes under such deforma-

tions. The relevant information about this is encoded in the structure of the critical points

of the superpotential.

Let p be any polynomial of degree d in one variable. Regarded as a map C → C, it is

a d-sheeted branched cover of the complex plane. The branch points are the critical points

x∗i of p, in which o(x∗i ) + 1 many sheets meet. Here o(x∗i ) denotes the order of the critical

point. Let us choose a base point b near ∞ in the image of p, which is not a critical value.

The preimage p−1(b) consists of d points which we denote by ba, a ∈ Zd in such a way that

the monodromy around ∞ acts on the fiber over b by ba 7→ ba+1.

Now let us suppose that all the critical values of p are different, and choose paths γi

from the critical values p(x∗i ) to b which only intersect each other in b. Then the preimage

p−1(γi) consists of o(x∗i ) + 1 paths γ̃µ
i going from x∗i to o(x∗i ) + 1 distinct preimages baµ

i
of

b (c.f. figure 4a). Taking b to ∞ and compactifying C to the disk, we obtain the following

schematic representation (c.f. figure 4b). The points ba are distinct points on the boundary

of the disk, which are cyclically ordered, and each of the critical points xi in the interior of

the disk is connected by the γ̃µ
i to o(x∗i ) + 1 of them. We call the union of these paths Γi.

Γi and Γj for i 6= j can only intersect on the boundary of the disk. Since
∑

i o(x
∗
i ) = d− 1

and all ba have to be connected to each other on Γ =
⋃

Γi, each ba can only lie on at most

two different Γi, and Γ has to be simply connected, i.e. there are no closed loops on it.

Note however that this graphical representation depends on a choice of the (homotopy

class of the) paths γi. In the following we will make a choice which is adapted to the

description of A-branes in Landau-Ginzburg models. The latter are one-dimensional

submanifolds of C on which the imaginary part ℑ(W ) is constant and on which the real

part ℜ(W ) is bounded from below [27]. This means in particular that the world volumes of

A-branes are unions (−γ̃µ
i )∪ γ̃µ′

i of preimages under W of paths γi = W (x∗i ) + R
≥0, where

now x∗i are the critical points of W . (A minus sign in front of a path indicates the inversion

of the parametrisation or orientation.) Thus, if we assume that ℑ(W (x∗i )) 6= ℑ(W (x∗j))

for all i 6= j, this choice of paths γi gives rise to a schematic representation of A-branes in
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the LG model.

For instance for W = Xd, there is one critical point x∗ = 0 of order d− 1. The critical

value W (x∗) = 0, thus A-branes consist of unions of two different premiages under W of

the nonnegative real line R
≥0, which are just γ̃µ = e

2πiµ
d R

≥0 for µ ∈ {0, . . . , d − 1}. The

graphical representation is hence a disk with one point in the interior from which d lines

representing γ̃µ go to the points bµ on the boundary, and A-branes are unions (−γ̃µ) ∪ γ̃ν

which we will denote by bµx∗bν .

Under a deformation Wλ of W , the critical point x∗ splits up into N distinct critical

points x∗i . If we assume that for all λ > 0 the imaginary parts ℑ(W (x∗i )) are all distinct,

and no further splitting of critical points occurs, then the ”topology” of the graphical

representation does not change.

The renormalisation group flow now drives Wλ to a homogeneous superpotential, i.e.

at its endpoint, there is only a single critical point left at 0. The other critical points go

off to ∞. If under the RG flow the imaginary parts ℑ(W (x∗i )) of the critical values all

stay separate and no further splitting of critical points occur, than it is easy to see what

happens to A-branes under this perturbation. A-branes which are attached to critical

points x∗i , i > 1 going off to ∞ decouple9 from the theory, while A-branes attached to the

critical point x∗1 which remains finite flow to the respective A-branes in the IR. A-branes

consisting of rays which are separated by the perturbation, i.e. rays which emanate from

different critical points for λ 6= 0 have to decay into sums of A-branes of the two types

above by addition and subtraction10 of rays going to those boundary points ba which lie

on intersections of graphs Γi and Γj . The summands then behave as described above. For

the special class of perturbations Wλ = Xnd +λXd this has been analysed in detail in [35].

This flow on A-branes has a simple description in terms of the graphical representation

of the deformations Wλ. In the UV, A-branes bix∗bj are specified by pairs (bi, bj) of two

different boundary points. The same is true in the IR, where however only the boundary

points baµ
1

remain. The flow associated to a graphical representation on the level of A-branes

is then just described by identifying all boundary points bi ∼ bj which are connected on

Γ − Γ1. An A-brane (bi, bj) in the UV therefore flows to the brane ([bi], [bj ]) in the IR,

where [·] denotes the equivalence class with respect to the equivalence relation ∼. If in

particular the two points (bi, bj) defining an A-brane in the UV are identified by ∼ then

the brane decouples from the theory. Note that while the set {[bi]} of rest classes forms a

cyclically ordered set, there is an ambiguity of identifying it with Zd′ . The latter is related

to the freedom of a quantum symmetry operation in the IR.

As a simple example let us consider the perturbation corresponding to Wλ = Xd +

λXd−1. The corresponding RG flow drives the system from the LG model with superpo-

tential W = Xd to the one with W = Xd−1 (c.f. section 3). The critical points of Wλ

are x∗1 = 0 of order d − 2 and x∗2 = −λ of order 1. Thus, for λ 6= 0 a critical point x∗2

9Their bulk-boundary couplings go to zero in the IR. This is clear for the topological couplings. Since

the flows at hand preserve supersymmetry also in the boundary sectors, and since furthermore the super-

symmetric boundary conditions in these models are classified, it also follows for all bulk-boundary couplings

on the level of the full conformal field theory.
10Addition with opposite orientation.
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Figure 5: Flow corresponding to Wλ = X4 + λX3 for a particular choice of λ.

of order 1 splits off from the critical point in 0 and goes to ∞ under the RG flow. The

A-brane ba1
2
x∗2ba2

2
consisting of the two preimages γ̃1

2 and γ̃2
2 of γ2 decouple from the the-

ory, while A-branes consisting of preimages γ̃µ
1 of γ1 flow to the corresponding A-branes in

the IR. All other A-branes decay into sums of A-branes of the two types. More precisely,

if Γ1 and Γ2 intersect in ba1
2

= baν
1
, then A-branes ba2

2
x∗baµ

1
in the UV decay into sums

ba2
2
x∗ba1

2
+ baν

1
x∗baµ

1
whose first summand decouples in the IR, while the second one stays

in the theory. For the case d = 4 this is schematically represented in figure 5. Which of

the rays x∗ba is torn off the UV critical point, and whether ba is connected to ba−1 or ba+1

by Γ2 depends on the phase of the perturbation parameter λ.

More generally, the topology of the graphical representation of a deformation depends

on the form of Wλ in a complicated way. Since the graphical representation carries the

information relevant for the analysis of the behaviour of A-branes under the respective

flows, we will avoid working directly with the deformations Wλ of the superpotential in the

following, but instead characterise a perturbation directly by the graphical representation.

6.2 Comparison

Indeed, the graphical representation of the behaviour of A-branes under bulk flows in the

mirror LG models described in the previous section is very reminiscent of the operation of

the defects P (m,n) on B-branes in the corresponding LG orbifolds. In section 5.4 above,

we gave a pictorial representation of B-branes in the LG-orbifolds Xd/Zd, in which the B-

brane associated to a matrix factorisation Q(M,N) was represented by a union of consecutive

segments SM ∪ . . .∪SM+N−1 of a disk divided into d segments. It can be easily worked out

that the graphical representation of the corresponding mirror A-brane in the unorbifolded

LG model with superpotential W = Xd is given by bMx∗bM+N . Thus, the mirror map just

replaces a union of consecutive segments by its oriented boundary.

It is now obvious that under the mirror map bulk flows of A-branes encoded in graphical

representation {Γi} such as in figure 6 can be pictorially represented by shrinking sectors,

and can therefore be described by defects P (m,n). More precisely, let

L = {a ∈ Zd | ba ≁ ba+1} , (6.1)

be the set of neighbouring points ba which are not connected on Γ − Γ1, and denote

the complement by Lc. Then the corresponding flow on the B-side can be represented
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Figure 6: Representation of a deformation of a degree 8 polynomial with four critical points.

pictorially by the shrinking operation SLc defined in section 5.4, and thus it is realised by

the corresponding defect P (m,n) with

L = m+ {0, n1, n1 + n2, . . . , n1 + · · · + no(x∗
1)+1} . (6.2)

Note that this parametrisation of L is ambiguous. Namely one can shift m 7→ m+
∑j

i=1 ni

and change the ni accordingly. This operation is nothing else than the IR quantum sym-

metry, which we identified above as giving rise to an ambiguity of the flow on A-branes.

For instance, the perturbation corresponding to figure 6 can be represented on the B-

side by the shrinking operation S{3,4,5,7} and is therefore described by the defect P (0,(1,1,4,2)).

To summarise, the analysis of the induced flows of A-branes the mirror Landau-

Ginzburg models indeed confirms that the defects P (m,n) describe the flows between mini-

mal model orbifolds.

7. Flows between C/Zd-orbifolds

There is a close link between Landau-Ginzburg models with superpotential W and non-

compact affine orbifold theories that can be obtained from the former by letting the su-

perpotential go to zero. Although the theories are in fact quite different, for example have

different central charge and F-terms, the structure of their twisted chiral sectors (twisted

F-terms) is unaffected by the presence or absence of an untwisted chiral superpotential [36].

Thus, the discussion of twisted chiral perturbations of Landau-Ginzburg orbifolds

above carries over to the case of affine orbifold models of type C/Zd, which can be regarded

as Zd orbifolds of Landau-Ginzburg models of a single chiral superfield with superpotential

W = 0. Indeed, these models have the same twisted chiral rings as the minimal model orb-

ifolds Md−2/Zd with one (a, c) field coming from the ground state of each twisted sector.

The perturbations we have been studying for the minimal model are hence directly related

to the perturbations by twisted chiral fields in the affine orbifold models. Indeed, it has

been found in [2, 1] that non-supersymmetric orbifold singularities of type C/Zd flow under

perturbation by twisted chiral fields into a number of disconnected lower orbifold singular-

ities in the IR, which is analogous to what one finds for the minimal model orbifolds. In
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fact, there is a common treatment of the corresponding flows Md−2/Zd 7→ Md′−2/Zd′−2

between minimal model orbifolds and C/Zd 7→ C/Zd′ between affine orbifolds in the frame-

work of gauged linear sigma models (see e.g. [3]). This suggests that also the flows between

affine orbifolds can be described by defects with a structure similar to that of the P (m,n).

Generally, matrix factorisations P of any polynomial W give rise to matrix factorisa-

tions ofW = 0 by setting p0 = 0. In this way, from the matrix factorisations P (m,n) defining

defects between LG orbifolds Xd/Zd one also obtains defects between orbifolds C/Zd. Ob-

viously they obey the same fusion algebra as the ones in the LG orbifolds, and also their

action on B-type defects is similar. Therefore these defects are the natural candidates to

describe the corresponding flows between the affine orbifolds.

As a side remark we would like to mention that for Landau-Ginzburg (orbifold) models

with superpotential W = 0, fusion with a defect corresponding to a matrix factorisation

P = (p1, 0) can also be thought of as Fourier-Mukai transform with kernel the (equivariant)

sheaf associated to the module coker(p1). This description is more in line with the common

description of D-branes in these models in terms of (equivariant) coherent sheaves.

8. Discussion

In this paper, we have considered the behaviour of B-type D-branes in Zd-orbifolds of

N = 2 minimal models Md−2 under bulk perturbations generated by relevant twisted chiral

operators. The new approach put forward here is based on the idea that perturbations of

conformal field theories give rise to defect lines between the UV and the IR theory of the

corresponding renormalisation group flows. This turns out to be particularly useful in

the treatment of bulk perturbations on surfaces with boundaries. Namely, the effect of

bulk flows on the boundary conditions can then be realised by merging this defect with

the respective boundary condition of the UV theory to obtain a new boundary condition

of the IR theory. A related idea has been put forward in [10], where it was shown how

certain boundary RG flows can be universally induced by fusion with defects. In situations

where N = 2 supersymmetry is preserved, the fusion procedure can be performed on the

level of the respective topologically twisted theories, making it unnecessary to deal with

regularisation issues.

Using the Landau-Ginzburg representation, we constructed a set of B-type defects

between minimal model orbifolds as equivariant matrix factorisations of the difference of

the respective superpotentials, and we proposed them to be associated to bulk flows between

these models. Their fusion among themselves and with B-type boundary conditions was

easily computed in the matrix factorisation formalism, and a comparison with the chiral

perturbations of the mirror LG models confirms that the defects indeed have the correct

properties to describe the flows.

We also argued that in an analogous way one can construct similar defects which

describe corresponding flows between affine orbifolds of type C/Zd.

Having obtained defects arising in flows between Landau-Ginzburg (or affine) orbifolds

with a single chiral superfield, it would be very interesting to find defects describing flows

between such models with several variables. In these models the analysis of the behaviour
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of A-branes under the corresponding flow in the mirror theories is much more complicated,

so that the defect approach would be very useful. It would allow the explicit computation

of flows of B-branes under bulk perturbations for instance in the C
2/Γ-orbifolds studied

in [2, 4 – 6].

Besides these special examples, we expect our approach to be powerful in any situations

where world sheet supersymmetry (as opposed to space-time supersymmetry) is preserved.

The extension to non-supersymmetric theories, or an understanding of our flow defects

on the level of the full conformal field theory as opposed to its topological subsector, is

less straight forward, because it requires a regularisation procedure for the fusion of non-

topological defects with boundary conditions. The investigation of the fusion properties

of non-topological defects on the level of the full conformal field theory has recently been

started in [25] for the example of the free boson. One of the conclusions of that paper

was that non-topological defects are generically unstable and tend to decay via defect-

dissociation, the inverse process of fusion. The defects investigated in the current paper

are certainly non-topological on the level of the full conformal field theory, and one might

wonder what possible decay channels could arise. A part of the answer is already given

in section 5, where we have shown that defects between the minimal models Md+n−2 and

Md−2 can be obtained by fusing n single step defects that relate Md+i−1 and Md+i−2. It

would be an interesting problem to determine via an analysis of the defect entropy proposed

in [25] wether our defects tend to dissociate into smaller step operators.

While we focused on relevant perturbations in this paper, by the same reasoning

defects can also be used in the study of exactly marginal bulk perturbations. (These do

not necessarily stay marginal in the presence of boundaries [21] but can induce non-trivial

RG flows in the boundary sectors.) For instance, σ-models on Calabi-Yau target spaces

have no tachyons, and hence do not exhibit relevant perturbations. But they do allow for

exactly marginal perturbations in general. Deforming such a theory around a singularity

in its Kähler moduli space, the corresponding monodromy transformation on the B-type

D-branes should be described by a defect. Indeed this is not at all surprising, because

these transformation can be represented as Fourier-Mukai transformations (see e.g. [37]),

which at least on a superficial level are related to defects via the folding trick. The defect

representation of these transformations in the Landau-Ginzburg phase is formulated

in [38], see also [39].

Even though there are no relevant flows between different Calabi-Yau σ-models, it is

still possible to construct defects between such models, for instance using the ones con-

structed in this paper for single minimal model orbifolds as building blocks. The physical

meaning of such defects however is unclear. Clearly they relate different string vacua, and

one might speculate that defect transitions could require some meaning, e.g. as tunneling

amplitudes in a background independent formulation of string theory.
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A. The conformal field theory point of view

In this appendix we would like to discuss various features that appeared in the main text

from the point of view of the conformal field theory, to which the LG model flows in the

IR. Our discussion will be restricted to defects that preserve the superconformal symmetry,

in particular, we will only consider defects between one minimal model and itself.

In the IR, the Landau-Ginzburg model with one chiral superfield and superpotential

W (X) = Xd flows to the unitary superconformal minimal model Mk, k = d − 2 with

A-type modular invariant partition function. These conformal field theories are rational

with respect to the N = 2 super Virasoro algebra at central charge ck = 3k
k+2 . In fact, the

bosonic part of this algebra can be realised as the coset W-algebra

(SVirck
)bos =

ŝu(2)k ⊕ û(1)4
û(1)2k+4

, (A.1)

and the respective coset CFT can be obtained from Mk by a non-chiral GSO projection.

The Hilbert space Hk of Mk decomposes into irreducible highest weight representa-

tions of holomorphic and antiholomorphic super Virasoro algebras, but it is convenient to

decompose it further into irreducible highest weight representations V[l,m,s] of the bosonic

subalgebra (A.1). These representations are labelled by

[l,m, s] ∈ Ik := {(l,m, s) | 0 ≤ l ≤ k, m ∈ Z2k+4, s ∈ Z4, l +m+ s ∈ 2Z}/ ∼ , (A.2)

where [l,m, s] ∼ [k − l,m + k + 2, s + 2] is the field identification. The highest weight

representations of the full super Virasoro algebra are given by

V[l,m] := V[l,m,(l+m)mod 2] ⊕ V[l,m,(l+m)mod 2+2] . (A.3)

For (l +m) even V[l,m] is in the NS-, for (l +m) odd in the R-sector. Here [l,m] ∈ Jk :=

{(l,m) | 0 ≤ l ≤ k, m ∈ Z2k+4}/ ∼, [l,m] ∼ [k − l,m + k + 2]. The Hilbert spaces of Mk

in the NSNS- and RR-sectors then read

Hk
NSNS

∼=
⊕

[l,m]∈Jk
l+m even

V[l,m] ⊗ V [l,m] , Hk
RR

∼=
⊕

[l,m]∈Jk
l+m odd

V[l,m] ⊗ V [l,m] . (A.4)

The theory exhibits an action of a Zk+2 symmetry group, realised by the simple current

(0, 2, 0). Orbifolding by this group introduces twisted sectors, in which the representations

of the left- and right-movers differ by the action of the appropriate power of the simple

current. Having included the twisted sectors, one has to projects onto Zk+2-invariant

sectors to obtain the Hilbert space of the orbifold theory. The action of the generator of
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the orbifold group in the twisted sector ψ ∈ V[l,m,s] ⊗ V[l,m−2n,s] is given by multiplication

with the phase

ψ 7→ e
2πi m+m−2n

2(k+2) ψ . (A.5)

The resulting Hilbert space differs from the initial unorbifolded one only by a relative minus

sign of m-labels in the left- and right-moving sectors:

Hk
NSNS

∼=
⊕

[l,m]∈Jk
l+m even

V[l,m] ⊗ V [l,−m] , Hk
RR

∼=
⊕

[l,m]∈Jk
l+m odd

V[l,m] ⊗ V [l,−m] . (A.6)

A.1 Defects

B-type defects in minimal models have been considered in [18]. Here, defects were for-

mulated as maps between closed string Hilbert spaces. They can be written as sums over

projectors onto modules of the bosonic subalgebra of the full supersymmetric model:

D =
∑

[l,m,s],s̄
s−s̄ even

D[l,m,s,s̄]P[l,m,s,s̄] , (A.7)

where P[l,m,s,s̄] is a projector on the subspace V[l,m,s] ⊗ V[l,m,s̄] of the Hilbert space. It is

furthermore understood that

D[l,m,s+2,s̄] = ηD[l,m,s,s̄] and D[l,m,s,s̄+2] = η̄D[l,m,s,s̄] . (A.8)

Consistent choices for the prefactors of the projection operators are given by

D[l,m,s,s̄]

[L,M,S,S̄]
= e−iπ S̄(s+s̄)

2

S[L,M,S−S̄][l,m,s]

S[0,0,0],[l,m,s]
, (A.9)

where the different defects have been labelled by [L,M,S, S̄] with [L,M,S − S̄] ∈ Ik, and

S[L,M,S][l,m,s] =
1

k + 2
e−iπ Ss

2 eiπ
Mm
k+2 sin

(
π

(L+ 1)(l + 1)

k + 2

)
(A.10)

is the modular S-matrix for the coset representations V[l,m,s]. It is then straightforward to

determine the composition of defects and their action on boundary states [18].

To obtain the defect in the orbifold theory, one simply has to switch the sign of m for

the right movers, such that the defect reads

Dorb =
∑

[l,m,s],s̄
s−s̄ even

D[l,m,s,s̄]P−
[l,m,s,s̄] , (A.11)

where P−
[l,m,s,s̄] is a projector on the subspace V[l,m,s] ⊗ V[l,−m,s̄] of the Hilbert space.
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A.2 The folding trick

The folding trick relates defects to permutation boundary states [40] of the tensor product of

two minimal models. We start with the unorbifolded theory. B-type permutation boundary

states in a tensor product of two minimal models satisfy the following conditions

(
G±(1)

r + iη1Ḡ
±(2)
−r

)
‖B〉〉 = 0 (A.12)

(
G±(2)

r + iη2Ḡ
±(1)
−r

)
‖B〉〉 = 0

In the case η1 = η2 the boundary conditions preserve the diagonal N = 2 algebra. The

corresponding boundary states have been discussed in [41, 42] and are explicitely given by

‖[L,M,S1, S2]〉〉 =
1

2
√

2

∑

l,m,s1,s2

SLl

S0l
eπiMm/(k+2)e−iπ(S1s1−S2s2)/2|[l,m, s1] ⊗ [l,−m,−s2]〉〉

(A.13)

Permutation boundary states in minimal model orbifolds can now be constructed using

standard conformal field theory techniques. We first note that the B-type permutation

boundary states (A.13) in the unorbifolded theory are invariant under the diagonal sub-

group Zd ⊂ Zd × Zd generated by the product g = g1g2 of the generators of the two Zd’s.

To construct the gn-twisted components of the boundary states we observe that the per-

mutation gluing condition requires that m̄2 = −m1 and m2 = −m̄1. In the sector twisted

by gn the relation between left- and right-moving m-labels is m1 = m̄1+2n, m2 = m̄2+2n,

so that the relevant Ishibashi states have labels m2 = −m̄1 = −m1 + 2n. Therefore, the

twisted boundary states take the form

||L,M, M̂ , S1, S2〉〉(−1)(s+1)F gn =
1

2
e−

πin
k+2

(M+M̂)
∑

l,m

∑

ν,ν2∈Z2

SLl

S0l
eπi Mm

k+2 (−1)S1ν1+S2ν2

e−πi s
2
(S1+S2) |[l,m, s + 2ν1] ⊗ [l,−m+ 2n, s+ 2ν2]〉〉 ,

where the additional label M̂ specifies the representation of the diagonal Zd on the Chan-

Paton factors. The subscript denotes the twist: for gn the Ishibashi states are in the nth

twisted sector. Furthermore, s distinguishes between NS and R sector, in our notation the

NS sector is the (−1)F twisted R-sector. We require that M + M̂ is always even, so that

the boundary state is invariant under n → n + k + 2. Also, as before, to preserve the

diagonal N = 2 we require that L+M and S1 + S2 are even.

To obtain a boundary state that is invariant under the full Zd ×Zd orbifold group, we

need to perform the projection (A.5) on states with 2m = 2n mod 2k + 4. This yields the

following boundary state

||L, M̂ , S1, S2〉〉(−1)(s+1)F =
1

2

∑

l,m

∑

ν,ν2∈Z2

SLl

S0l
eπi M̂m

k+2 (−1)S1ν1+S2ν2

e−πi s
2
(S1+S2) |[l,m, s + 2ν1] ⊗ [l,m, s + 2ν2]〉〉 .

In this way we have constructed B-type permutation boundary states in the tensor product

of minimal model orbifolds out of those in the corresponding unorbifolded theory. This
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orbifold procedure is analogous to the one described on the level of Landau-Ginzburg

models in section 4. In particular, after unfolding the states with L = 0 correspond to the

defects realising the group of quantum symmetries in the orbifold theory which have been

constructed in Landau Ginzburg formalism in section 4.3.

A.3 Cylinder amplitude and the folding trick

From the formula of the defect operators A.11, it is straighforward to determine the fusion

of the corresponding defects with D-branes. Instead of doing this calculation, we find it

instructive to present an alternative derivation using the folding trick. More specifically,

we will compute cylinder amplitudes in the tensor product of minimal models between

permutation boundary states on one side and tensor product boundary states on the other.

Via the folding trick we will reinterprete them as cylinder amplitudes in a single minimal

model with boundary conditions corresponding to the two tensor factors on both ends of

the cylinder with a defect line corresponding to the permutation boundary state in between

them. The relevant one-loop amplitude in the unorbifolded theory is

〈〈(L1, S1)|| ⊗ 〈〈(L2, S2)||q
1
2
(L0+L̄0)−

c
12 || [L̂, M̂ , Ŝ1, Ŝ2]〉〉 (A.14)

=
∑

[l,m,s]

χ[l,m,s](q̃
1/2)

∑

l̂

(
NL1L2

l̂Nl̂L̂
l δ(4)(s+ Ŝ1 + Ŝ2 − (S1 + S2) + 1)

+Nk−L1L2
l̂Nl̂L̂

l δ(4)(s+ Ŝ1 + Ŝ2 − (S1 + S2) − 1)
)
.

Here ||(Li, Si)〉〉 are B-type boundary state in a single minimal model (see e.g. [18] for more

details on the notation). Note that in the case Ŝ1 = Ŝ2 mod 2 and S1 = S2 mod 2 the

representations appearing in the open string sector are formally in the R-sector, but are to

be interpreted as twisted NS-sector representations. In the closed string sector, this shift is

related to the fact that the overlap of a tensor product with a permutation boundary state

is a trace with an insertion of the permutation σ. Since σ interchanges states, a minus sign

is picked up in the fermionic relative to the bosonic case.

〈〈[l, 0, s] ⊗ [l, 0, s]|q 1
2
(L0+L̄0)−

c
12 |[l, 0, s] ⊗ [l, 0, s]〉〉σ = Tr[l,0,s]⊗[l,0,s]

(
qL0−

c
12 σ

)

= e−πis/2χ[l,0,s](q
2) . (A.15)

We would now like to find the defect D corresponding to the permutation boundary state.

This can be deduced by comparing the characters appearing in this cylinder amplitude with

those appearing in the cylinder amplitudes between two B-type boundary states in a single

minimal model. The goal is to find a homomorphism D such that the above amplitude is

reproduced by the cylinder amplitude between D‖(L1, S1)〉〉 on one side and ‖(L2,−S2)〉〉 on

the other. Note that in the cylinder amplitude taken in the tensor product, the boundary

states ‖(L1, S1)〉〉 and ‖(L2, S2)〉〉 are both ingoing (or both outgoing). On the other hand,

taking a cylinder amplitude in a single minimal model, one of the boundaries becomes

outgoing (ingoing), so that one of the states has to be conjugated: ‖(L,S)〉〉 7→ 〈〈(L,−S)||.
Further care must be taken because of the phase (−1)FL that appears in the folded model.

Taking this phase into account effectively shifts the S-label of a B-type boundary state by
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one (changing the spin structure), such that the δ(4)-constraint in the above formula gets

shifted by one. Taking all of this into account, the above formula is consistent with the

defect action

D[L1,M1,S1,S̄1]‖[L2,M2, S2]〉〉B =
∑

[L,M,S]∈Ik

N [L,M,S]

[L1,M1,S1−S̄1][L2,M2,S2]
‖[L,M,S]〉〉B (A.16)

=
∑

L

NL
L1L2

‖[L,M1 +M2, S1 − S̄1 + S2]〉〉B ,

such that the permutation boundary state corresponds to the defect operator (A.7) with

the same labels. The discussion in the orbifold theory is similar, the only difference being

that the boundary states of the orbifold have an additional M -label, leading to a δ(2k+4)

constraint on the m-labels in all cylinder amplitudes.

References

[1] A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE

space-times, JHEP 10 (2001) 029 [hep-th/0108075].

[2] J.A. Harvey, D. Kutasov, E.J. Martinec and G.W. Moore, Localized tachyons and RG flows,

hep-th/0111154.

[3] C. Vafa, Mirror symmetry and closed string tachyon condensation, hep-th/0111051.

[4] E.J. Martinec and G.W. Moore, On decay of K-theory, hep-th/0212059.

[5] G.W. Moore and A. Parnachev, Localized tachyons and the quantum McKay correspondence,

JHEP 11 (2004) 086 [hep-th/0403016].

[6] G. Moore and A. Parnachev, Profiling the brane drain in a nonsupersymmetric orbifold,

JHEP 01 (2006) 024 [hep-th/0507190].

[7] V.B. Petkova and J.B. Zuber, Generalised twisted partition functions, Phys. Lett. B 504

(2001) 157 [hep-th/0011021].

[8] C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and

holography, JHEP 06 (2002) 027 [hep-th/0111210].
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